Метод прогнозирования экстраполяция

8. Методы экстраполяции

Экстраполяцияпредставляет метод прогнозирования, заключающийся в изучении сложившихся в прошлом и настоящем устойчивых тенденций развития процессов и явлений и переносе их на будущее. Метод экстраполяции применим, если используются следующиедопущения: а) период времени, для которого построена функция, должен быть достаточным для выявлении тенденции развития, б) анализируемый процесс является устойчиво динамическим и обладает инерционностью, т.е. для значительных изменений характеристик процесса требуется время, в) не ожидается сильных внешних воздействий на изучаемый процесс, которые могут серьезно повлиять на тенденцию развития. Прогнозирование с помощью метода экстраполяции – один из простейших методов статистического прогнозирования. Его использование оправдано при недостаточном знании о природе изучаемого явления или отсутствии данных, необходимых для применения более совершенных методов прогнозирования.

Различают а) простую экстраполяцию, которая предполагает, что все действовавшие в прошлом и настоящем тенденции сохранятся в полном объеме, так как все действовавшие факторы останутся неизменными, б)прогнозную экстраполяцию, которая базируется на предположении об изменении факторов, определяющих динамику изучаемого процесса или явления.

Основу экстраполяции составляет изучение динамических рядов, представляющих собой упорядоченные во времени наборы измерений тех или иных показателей исследуемого объекта. В основе динамического анализа лежит понятие траектории, которая описывает состояние изучаемого процесса как функцию от времени:Q=Q(t),t [0,T], [0,T] – отрезок времени.

При этом время может учитываться как по интервалам, так и непрерывно. В первом случае функция называется динамическим рядом.

Использование экстраполяции имеет в своей основе предположение о том, что рассматриваемый процесс представляет собой сочетание двух составляющих: регулярной составляющей (Хt) и случайной переменной ( ). Временной ряд может условно представлен в виде:Yt=Xt+ t.

Регулярная составляющаяназывается трендом, тенденцией и характеризует существующую динамику развития процесса в целом.Случайная составляющаяотражает случайные колебания (шумы процесса).

Показателями развития процессаявляются абсолютный прирост, темп роста, темп прироста. Показатели изменения динамического ряда могут вычисляться на постоянной и переменой базе. Для обобщающей оценки скорости и интенсивности изменения динамического ряда используются различные средние характеристики, среди которых являются средний темп роста и средний темп прироста. Средний темп роста рассчитывают как среднее геометрическое и как среднее параболическое.Среднее геометрическоерассчитывается из последовательных цепных темпов роста: ,среднее параболическоеориентировано на сумму динамического ряда и определяется из уравнения:

Задача ППЭсостоит в определении вида экстраполирующих функций Хtи tна основе исходных эмпирических данных и параметров выбранной функции.

Методика построениятрендовых моделей представляет сочетание качественного экономического анализа и формальных математико-статистических методов и включает несколько этапов: 1)Выбор класса функции тренда.Существует более 40 временных функций, отличающихся своими свойствами. Надо выбрать ту, которая отражает главные особенности динамики исследуемого показателя, прежде всего тип развития. Можно выделить 4 типа экономического роста: постоянный, увеличивающийся, уменьшающийся и рост с качественными изменениями характеристик на протяжении рассматриваемого периода. 2)Оценка параметров функции. Он проводится методами регрессионного анализа. 3)Расчет значений формальных критериев аппроксимации. Для характеристики близости тренда к аппроксимируемому динамическому ряду применяют несколько формальных критериев: сумма квадратов отклонений значений тренда от фактических значений, значение коэффициента детерминации и т.д. 4)Анализ остаточной компоненты динамического ряда.5)Выбор функции тренда. Результатом предшествующих этапов является построение нескольких функций тренда для одного показателя. Выбор лучшей осуществляется путем сопоставления значений, возможностей экономической интерпретации и использования в прогнозировании.

МЕТОД ЛИНЕЙНОЙ экстраполяции. Сущность метода заключается в том, что прогнозные величины определяются на основе среднего прироста (снижения) исследуемого показателя за определенный период времени.

Пример. Предположим, у нас имеются данные об объеме ВНП страны за ряд лет:

*Предлагаемые к заключению договоры или финансовые инструменты являются высокорискованными и могут привести к потере внесенных денежных средств в полном объеме. До совершения сделок следует ознакомиться с рисками, с которыми они связаны.

Ссылка на основную публикацию