Гэс

/ Гидроэлектростанция

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

 Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующаяэнергию водного потока. Гидроэлектростанции обычно строят нареках, сооружаяплотиныиводохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразныевиды рельефа.

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Принцип работы ГЭС

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные — вырабатывают от 25 МВТ и выше,

средние — до 25 МВт,

малые гидроэлектростанции — до 5 МВт.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

высоконапорные — более 60 м,

средненапорные — от 25 м,

низконапорные — от 3 до 25 м.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

По данным KEGOC — системного оператора единой электроэнергетической системы Казахстана — производство электрической энергии в стране осуществляют 72 электростанции различной формы собственности.

Фактическая установленная мощность на конец 2012 года — 19,4 ГВт, [2] на конец 2013 года — 19,6 ГВт.

KEGOC подразделяет электрические станции на электростанции национального значения, электростанции в составе промышленных комплексов и электростанции регионального значения.

В списке перечисляются электростанции Казахстана. Список сортирован по видам электростанций. Установленная мощность и структура собственности электростанций приводится в соответствии с официальными годовыми отчётами генерирующих компаний Казахстана. В качестве собственника электростанций АО «АлЭС» (Алматинские ТЭЦ-1, ТЭЦ-2 и ТЭЦ-3, Капчагайская ГЭС и Алматинский каскад ГЭС) указывается Самрук-Энерго, так как 100 % акций АО «АлЭС» принадлежитСамрук-Энерго.

В Казахстане имеются значительные гидроресурсы, теоретически мощность всех гидроресурсов страны составляют 170 млрд кВт·ч в год. Основные реки: Иртыш, Или иСырдарья. Экономически эффективные гидроресурсы сосредоточены в основном на востоке (горный Алтай) и на юге страны. Крупнейшие ГЭС: Бухтарминская,Шульбинская, Усть-Каменогорская (на реке Иртыш) и Капчагайская (на реке Или) обеспечивающие 10 % потребностей страны.

В Казахстане планируется увеличение использования гидроресурсов в среднесрочном периоде. В декабре 2011 г. была запущена в эксплуатацию Мойнакская ГЭС(300 МВт), проектируются Булакская ГЭС (78 МВт), Кербулакская ГЭС (50 МВт) и ряд малых ГЭС.

Капчагайская ГЭС (Капшагайская ГЭС)

Большая и Малая Алматинка

Каратальская ГЭС (ГЭС-1)

Каратальские ГЭС-2, 3, 4

ТОО «Каскад Каратальских ГЭС»

Лениногорский каскад ГЭС (Хариузовская и Тишинская ГЭС)

ТОО «Компания А Т»

Меркенские ГЭС-1, 2, 3

ТОО «Гидроэнергетическая компания»

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в

водохранилищах и развивается рыболовство.

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен ват были сооружены в 1876-1881 годах в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 году промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на реке Изар (Германия) и в Калифорнии (США). В 1896 году вступила в строй Ниагарская ГЭС (США) постоянного тока, в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

Убедительными сведеньями о первой в мире ГЭС можно считать и информацию о первой гидроэлектростанции Хорватии в городке Шибеник (1885 год). Напряжение переменного тока мощностью 230 кВт служило для городского освещения.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт. Полученная энергия освещала производственные помещения, обеспечивала работу телефонной станции, и питала электронасосы для откачки воды из рудниковых шахт.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски Негаданный и Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

На 2012 год гидроэнергетика обеспечивает производство до 21% всей электроэнергии в мире, установленная энергетическая мощность гидроэлектростанций (ГЭС) достигает 715 ГВт. Лидерами по выработке гидроэнергии в абсолютных значениях являются: Китай, Канада, Бразилия, а на душу населения — Норвегия, Исландия и Канада. Крупнейшими мировыми гидроэлектростанциями являются:

·Три ущелья (Китай, река Янцзы) — 22,4 ГВт,

·Итайпу (Бразилия, река Парана) — 14 ГВт,

·Гури (Венесуэла, река Карони) 10,3 ГВт,

·Тукуруи (Бразилия, река Токантинс) — 8,3 ГВт,

·Гранд-Кули (США, река Колумбия) — 6,8 ГВт,

·Саяно-Шушенская (Россия, река Енисей) 6,4 ГВт,

·Красноярская (Россия, река Енисей) 6 ГВт,

·Робер-Бурасса (Канада, река Ла-Гранд) 5,6 ГВт,

·Черчилл-Фолс (Канада, река Черчил) — 5,4 ГВт,

По состоянию на 2011 год в России имеется 15 действующих, достраиваемых и находящихся в замороженном строительстве гидравлических электростанций свыше 1000 МВт и более сотни гидроэлектростанций меньшей мощности.

При этом по экономическому потенциалу гидроэнергоресурсов Россия занимает второе место и мире (порядка 852 млрд. кВт ч.) после Китая, однако, по степени их освоения — 20% — уступает практически всем развитым странам и многим развивающимся государствам. Степень износа оборудования большинства российских гидростанций превышает 40%, а по некоторым ГЭС этот показатель достигает 70%, что связано с системной проблемой всей гидроэнергетической отрасли и ее хроническим недофинансированием.

Основные виды ГЭС

Русловые и плотинные ГЭС

Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

— плотина, 2 — затворы, 3 — максимальный уровень верхнего бьефа, 4 — минимальный уровень верхнего бьефа, 5 — гидравлический подъёмник, 6 — сороудерживающая решётка, 7 гидрогенератор, 8 — гидравлическая турбина, 9 — минимальный уровень нижнего бьефа, 10 — максимальный паводковый уровень

Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

— плотина, 2 — водовод, 3 — площадка электротехнического оборудования высокого напряжения, 4 — здание машинного зала ГЭС.

Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Схема деривационной гидроэлектрической станции: 1 — плотина, 2 водоподъёмник, 3 — отстойник, 4 — деривационный канал, 5 — бассейн суточного регулирования, 6 — напорный бассейн, 7 — турбинный водовод, 8 — распределительное устройство, 9 — здание ГЭС, 10 — водосброс, 11 — подъездные пути

Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Приливные ГЭС (ПЭС):

Особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. В приливных электростанциях используется перепад уровней воды (колебания уровня воды у берега могут достигать 12 метров), образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов).

Принцип действия ГЭС. Основные сооружения и оборудование гидроэлектростанций

Гидроэлектростанция ? это комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.

Гидроэлектростанции являются составной частью гидроузла — комплекса гидротехнических сооружений, предназначенных для использования водных ресурсов в интересах народного хозяйства: получения электрической энергии, ирригации, водоснабжения, улучшения условий судоходства, защиты от наводнений, рыбоводства и др.

Мощность гидравлического потока зависит от расхода и напора. Скорость потока воды в реке изменяется по ее длине с изменением сечения русла и гидравлического уклона. Для концентрации мощности и сосредоточения напора реки в каком-либо одном месте возводят гидротехнические сооружения: плотину, деривационный канал.

Плотина, перегородив реку, образует водохранилище, достигающее иногда таких больших размеров, что его называют морем. Таковы, например, Волгоградское, Цимлянское море, простирающиеся более чем на 100 км. Поверхность воды перед плотиной называется верхним бьефом, а за плотиной — нижним бьефом.

Водосбросные сооружения перепускают воду из верхнего бьефа в нижний во избежание превышения максимального расчетного уровня воды в период паводка, сбрасывает лед, шугу и т.п.

Если река судоходна, то к плотине примыкают шлюзы (судоподъемники) с подходными каналами для пропуска судов и плотов через гидроузел, перевалки грузов и пересадки пассажиров с водного на сухопутный транспорт и пр.

Для обеспечения отбора и подачи воды неэнергетическим потребителям в состав гидроузла входят водоприемные сооружения и насосные станции.

Рыбохозяйственные сооружения — это рыбоходы и рыбоподъемники для пропуска через гидроузел ценных пород рыб к местам постоянных нерестилищ, рыбозащитные сооружения и сооружения для искусственного рыборазведения. Иногда рыбу пропускают через шлюзы в процессе шлюзования судов.

Для связи объектов гидроузла между собой, соединения их с сетью государственных автомобильных и железных дорог, а также для пропуска этих дорог через сооружения гидроузла строят транспортные сооружения: мосты, дороги и др.

Для выработки электроэнергии и ее распределения потребителям в состав гидроузла входят различные энергетические сооружения. К ним относятся: водоприемные устройства и водоводы, подводящие воду из верхнего бьефа к турбинам и отводящие воду в нижний бьеф, здание гидроэлектростанций с гидротурбинами, гидрогенераторами и трансформаторами, вспомогательное механическое и подъемно — транспортное оборудование, пульт управления, открытые распределительные устройства, предназначенные для приема и распределения энергии.

Принцип действия ГЭС заключается в следующем: плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.

Напор создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Деривацией в гидротехнике называют совокупность сооружений, осуществляющих отвод воды из реки, водохранилища или другого водоёма, транспортировку её к станционному узлу ГЭС, насосной станции, а также отвод воды от них. Различают деривацию безнапорную и напорную. Напорная деривация — трубопровод, напорный туннель, применяется, когда колебания уровня воды в месте её забора или отвода значительны. При малых колебаниях уровня может применяться как напорная, так и безнапорная деривация. Тип деривации выбирается с учётом природных условий района на основании технико-экономического расчёта. Протяжённость современных деривационных водоводов достигает нескольких десятков километров, пропускная способность более 2000 м3/сек. Основное энергетическое оборудование размещается в здании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля, в центральном посту управления пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию. По установленной мощности различают мощные (свыше 250 МВт), средние (до 25 МВт) и малые (до 5 МВт). Мощность ГЭС зависит от напора (разности уровней верхнего и нижнего расхода воды Q (м3/сек)), используемого в гидротурбинах, и КПД гидроагрегата.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации — до 1500 м.

Одними из самых важных составляющих ГЭС считаются гидрогенераторы и гидротурбины.

Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала.

По принципу действия гидротурбины делят на реактивные (напороструйные) и активные (свободноструйные). Вода к рабочему колесу поступает либо через сопла (в активных гидротурбинах), либо через направляющий аппарат (в реактивных гидротурбинах).

Наиболее распространённой разновидностью активной гидротурбины является ковшовая турбина. Ковшовые турбины конструктивно сильно отличаются от наиболее распространенных реактивных гидротурбин (радиально-осевых, поворотно-лопастных), у которых рабочее колесо находится в потоке воды. В ковшовых турбинах вода подается через сопла по касательной к окружности, проходящей через середину ковша. Вода, проходя через сопло, формирует струю, летящую с большой скоростью и ударяющую о лопатку турбины, после чего колесо проворачивается, совершая работу. После отклонения одной лопатки под струю подставляется другая. Процесс использования энергии струи происходит при атмосферном давлении, а производство энергии осуществляется только за счет кинетической энергии воды. Лопатки турбины имеют двояковогнутую форму с острым лезвием посередине, задача лезвия — разделять струю воды с целью лучшего использования энергии. Ковшовые гидротурбины применяются при напорах более 200 метров (чаще всего 300-500 метров и более), при расходах до 100 м³/сек. Мощность наиболее крупных ковшовых турбин может достигать 200-250 МВт и более. При напорах до 700 метров ковшовые турбины конкурируют с радиально-осевыми, при больших напорах их использование безальтернативно. Как правило, ГЭС с ковшовыми турбинами построены по деривационной схеме, поскольку получить столь значительные напоры при помощи плотины проблематично. Преимуществами ковшовых турбин является возможность использования очень больших напоров, а также небольших расходов воды. Недостатки турбины — неэффективность при небольших напорах, невозможность использования как насоса, высокие требования к качеству подаваемой воды.

*Предлагаемые к заключению договоры или финансовые инструменты являются высокорискованными и могут привести к потере внесенных денежных средств в полном объеме. До совершения сделок следует ознакомиться с рисками, с которыми они связаны.

Ссылка на основную публикацию