6 Корреляционный анализ

6 Корреляционный анализ

6.1 Корреляционный анализ, его цели и методы

Любой закон природы или общественного развития может быть представлен описанием совокупности взаимосвязей. Если эти зависимости стохастичны, а анализ осуществляется по выборке из генеральной совокупности, то данная область исследований относится к задачам статистического исследования зависимостей, которые включают в себя корреляционный, регрессионный, дисперсионный, ковариационный анализ и анализ таблиц сопряженности.

Основное содержание анализа взаимосвязей – это поиск ответа на вопросы:

Существует ли связь между исследуемыми переменными?

Как измерить тесноту связей?

Общая схема взаимосвязи параметров при статистическом исследовании приведена на рис. 1.

На рисунке S – модель исследуемого реального объекта, Объясняющие (независимые, факторные) переменные описывают условия функционирования объекта. Случайные факторы – это факторы, влияние которых трудно учесть или влиянием которых в данный момент пренебрегают. Результирующие (зависимые, объясняемые) переменные характеризуют результат функционирования объекта.

Выбор метода анализа взаимосвязи осуществляется с учетом природы анализируемых переменных.

ранговые корреляции Спирмена, Кенделла, полихорическая корреляция и др.

рангово-бисериальная корреляция и меры ассоциации

меры ассоциации,отношение шансов

Корреляционный анализ — метод обработки статистическихданных, заключающийся в изучении связи между переменными.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = sin(x) и B = cos(x), то он будет близок к нулю, т.е. зависимость между величинами отсутствует.

При исследования корреляции используются графический и аналитический подходы.

Графический анализ начинается с построения корреляционного поля. Корреляционное поле (или диаграмма рассеяния) является графической зависимостью между результатами измерений двух признаков. Для ее построения исходные данные наносят на график, отображая каждую пару значений (xi,yi) в виде точки с координатами xi и yi в прямоугольной системе координат.

Визуальный анализ корреляционного поля позволяет сделать предположение о форме и направлении взаимосвязи двух исследуемых показателей. По форме взаимосвязи корреляционные зависимости принято разделять на линейные (см. рис. 1) и нелинейные (см. рис. 2). При линейной зависимости огибающая корреляционного поля близка к эллипсу. Линейная взаимосвязь двух случайных величин состоит в том, что при увеличении одной случайной величины другая случайная величина имеет тенденцию возрастать (или убывать) по линейному закону.

*Предлагаемые к заключению договоры или финансовые инструменты являются высокорискованными и могут привести к потере внесенных денежных средств в полном объеме. До совершения сделок следует ознакомиться с рисками, с которыми они связаны.

Ссылка на основную публикацию